ST.JOSEPH’S COLLEGE OF ENGINEERING, CHENNAI – 119

UNIT TEST -II OCT 2011
Subject : Problem Solving and Programming Code : 600102

Branch : M.C.A

 Semester : I

Duration: 1 Hr 30 Min

 Max. Marks: 50
Answer all the questions

 PART-A
 (10 x 2 = 20 Marks)

1. Compare structure and a union.

	Structures
	Unions

	1. Each member in a structure occupies and uses its own memory space.

2. The keyword struct tells us that we are dealing with structures.

3. All the members of a structure can be

 intialized.

4. The members of a structure are not stored in sequence of memory locations.
	1. All the members of a union use the same memory space.
2. The keyword union tells us that we are dealing with the unions.

3. Only the first member of a union can be initialized.

4.The members of an union are stored in sequence of memory locations.

2. What are the various string handling functions.

 strlen(), strcpy(), strcat(), strcmp(), strlwr(), strupr(), strdup(), strrev(),

 strncpy(), strncmp(), strcmpi(),strnicmp().

3. Define slack byte.

Structures are stored in memory using word boundary. The size of the word boundary is m/c dependent. If it is two byte word boundary the data is stored in two bytes. Even a char is needed a single byte it will be stored in two byte in a word boundary. One byte is left unused. The unused byte will contain some garbage value. This byte is called as a slack byte.
4. What is a graph?

A graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected objects are represented by mathematical abstractions called vertices, and the links that connect some pairs of vertices are called edges.
5. List out different file modes.

r - open for reading

w - open for writing (file need not exist)

a - open for appending (file need not exist)

r+ - open for reading and writing, start at beginning

w+ - open for reading and writing (overwrite file)

a+ - open for reading and writing (append if file exists

Ex.

FILE *fp;

fp=fopen("c:\\test.txt", "r");

 PART-B (2*16+1*8) = 40 Marks

6. a Explain about structure and union with suitable example.

 (16)

Ans:

Structures

Structures in C are used to encapsulate, or group together different data into one object. You can define a Structure as shown below:

Sample Code

1. struct object {
2. char id[20];

3. int xpos;

4. int ypos;

5. };

Copyright exforsys.com

Structures can group data of different types as you can see in the example of a game object for a video game. The variables you declare inside the structure are called data members.

Initializing a Structure

Structure members can be initialized when you declare a variable of your structure:

Sample Code

1. struct object player1 = {“player1”, 0, 0};

Copyright exforsys.com

The above declaration will create a struct object called player1 with an id equal to “player1”, xpos equal to 0, and ypos equal to 0.

To access the members of a structure, you use the “.” (scope resolution) operator. Shown below is an example of how you can accomplish initialization by assigning values using the scope resolution operator:

Sample Code

1. struct object player1;

2. player1.id = “player1”;

3. player1.xpos = 0;

4. player1.ypos = 0;

Copyright exforsys.com

Functions and Structures

Since structures are of custom data types, functions can return structures and also take them as arguments. Keep in mind that when you do this, you are making a copy of the structure and all it's members so it can be quite memory intensive.

To return a structure from a function declare the function to be of the structure type you want to return. In our case a function to initialize our object structure might look like this:

Sample Code

1. struct object createobj(char id[], int xpos, int ypos) {
2. struct object newobj;

3.

4. strcpy(newobj.id, name);

5. newobj.xpos = xpos;

6. newobj.ypos = ypos;

7.

8. return newobj;

9. }
Copyright exforsys.com

rrays of Structure

Since structures are data types that are especially useful for creating collection items, why not make a collection of them using an array? Let us now modify our above example object1.c to use an array of structures rather than individual ones.

object2.c:

Sample Code

1. #include <stdio.h>
2. #include <stdlib.h>
3.

4. struct object {
5. char id[20];

6. int xpos;

7. int ypos;

8. };

9.

10. struct object createobj(char id[], int xpos, int ypos);

11.

12. void printobj(struct object obj);

13.

14. void main() {
15.

16. int i;

17. struct object gameobjs[2];

18. gameobjs[0] = createobj("player1", 0, 0);

19. gameobjs[1] = createobj("enemy1", 2, 3);

20.

21. for (i = 0; i < 2; i++)
22. printobj(gameobjs[i]);

23.

24. //update enemy1 position
25. gameobjs[1].xpos = 1;

26. gameobjs[1].ypos = 2;

27.

28. for (i = 0; i < 2; i++)
29. printobj(gameobjs[i]);

30. }
31.

32. struct object createobj(char id[], int xpos, int ypos) {
33. struct object newobj;

34. strcpy(newobj.id, id);

35. newobj.xpos = xpos;

36. newobj.ypos = ypos;

37. return newobj;

38. }
39.

40. void printobj(struct object obj) {
41. printf("name: %s, ", obj.id);

42. printf("x position: %d, ", obj.xpos);

43. printf("y position: %d", obj.ypos);

44. printf("n");

45. }
Copyright exforsys.com

We create an array of structures called gamobjs and use the createobj function to initilize it's elements. You can observer that there is not much difference between the two programs. We added an update for the enemy1's position to show how to access a structure's members when it is an element within an array.

Structure within a Structure

Structures may even have structures as members. Imagine our x, y coordinate pair is a structure called coordinates. We can redeclare our object structure as follows:

Sample Code

1. struct object {
2. char id[20];

3. struct coordinates loc;

4. };

Copyright exforsys.com

You can still initialize these by using nested braces, like so:

Sample Code

1. struct object player1 = {“player1”, {0, 0}};

2.

3. <p>To access or set members of the above internal structure you would do like this:</p>

4.

5. <p>{geshibot language="c"} struct object player1;

6. player1.id = “player1”;

7. player1.loc.xpos = 0;

8. player1.loc.ypos = 0;

Copyright exforsys.com

You simply add one more level of scope resolution.

Unions

Unions and Structures are identical in all ways, except for one very important aspect. Only one element in the union may have a value set at any given time. Everything we have shown you for structures will work for unions, except for setting more than one of its members at a time. Unions are mainly used to conserve memory. While each member within a structure is assigned its own unique storage area, the members that compose a union share the common storage area within the memory. Unions are useful for application involving multiple members where values are not assigned to all the members at any one time.

Let us modify our structure object from above so that it has a union for indicating dead or alive in it:

Sample Code

1. struct object {
2. char id[20];

3. struct coordinates loc;

4. union deadoralive {
5. int alive;

6. int dead;

7. }
8. };

Copyright exforsys.com

Only dead or alive can be set to anything at any one time. You can get to it the same as with a structure inside a structure as we learned in the last section.

OR

 6. b Explain about file management with suitable examples.
 (16)

Ans:

The file I/O functions and types in the C language are straightforward and easy to understand. To make use of these functions and types you have to include the stdio library. (Like we already did in most of the tutorials).

The file I/O functions in the stdio library are:

· fopen – opens a text file.

· fclose – closes a text file.

· feof – detects end-of-file marker in a file.

· fscanf – reads formatted input from a file.

· fprintf – prints formatted output to a file.

· fgets – reads a string from a file.

· fputs – prints a string to a file.

· fgetc – reads a character from a file.

· fputc – prints a character to a file.

File I/O: opening a text file

The fopen library function is used to open a text file. You also have to use a specified mode when you open a file. The three most common modes used are read (r), write (w), and append (a). Take a look at an example:

#include<stdio.h>

int main()

{

FILE *ptr_file;

int x;

ptr_file =fopen("output.txt", "w");

if (!ptr_file)

return 1;

for (x=1; x<=10; x++)

fprintf(ptr_file,"%d\n", x);

fclose(ptr_file);

return 0;

}

So let’s take a look at the example:

ptr_file =fopen(“output”, “w”);

The fopen statement opens a file “output.txt” in the write (w) mode. If the file does not exist it will be created. But you must be careful! If the file exists, it will be destroyed and a new file is created instead. The fopen command returns a pointer to the file, which is stored in the variable ptr_file. If the file cannot be opened (for some reason) the variable ptr_file will contain NULL.

if (!ptr_file)

The if statement after de fopen, will check if the fopen was successful. If the fopen was not successful, the program will return a one. (Indicating that something has gone wrong).

for (x=1; x<=10; x++)

This for loop will count to ten, starting from one.

fprintf(ptr_file,”%d\n”, x);

The fprintf statement should look very familiar to you. It can be almost used in the same way as printf. The only new thing is that it uses the file pointer as its first parameter.

fclose(ptr_file);

The fclose statement will close the file. This command must be given, especially when you are writing files. So don’t forget it. You have to be careful that you don’t type “close” instead of “fclose”, because the close function exists. But the close function does not close the files correctly. (If there are a lot of files open but not closed properly, the program will eventually run out of file handles and/or memory space and crash.)

File I/O: reading a text file

If you want to read a file you have to open it for reading in the read (r) mode. Then the fgets library functions can be used to read the contents of the file. (It is also possible to make use of the library function fscanf. But you have to be sure that the file is perfectly formatted or fscanf will not handle it correctly). Let’s take a look at an example:

#include<stdio.h>

int main()

{

FILE *ptr_file;

char buf[1000];

ptr_file =fopen("input.txt","r");

if (!ptr_file)

return 1;

while (fgets(buf,1000, ptr_file)!=NULL)

printf("%s",buf);

fclose(ptr_file);

return 0;

}

Note:The printf statement does not have the new-line (\n) in the format string. This is not necessary because the library function fgets adds the \n to the end of each line it reads.

A file “input.txt” is opened for reading using the function fopen en the mode read (r). The library function fgets will read each line (with a maximum of 1000 characters per line.) If the end-of-file (EOF) is reached the fgets function will return a NULL value. Each line will be printed on stdout (normally your screen) until the EOF is reached. The file is then closed and the program will end.

7. a Describe about various string handling functions with example. (16)
Ans:

String Handling: <string.h>

 Recall from our discussion of arrays (Chapter 6) that strings are defined as an array of characters or a pointer to a portion of memory containing ASCII characters. A string in C is a sequence of zero or more characters followed by a NULL ([image: image1])character:

[image: image2]
It is important to preserve the NULL terminating character as it is how C defines and manages variable length strings. All the C standard library functions require this for successful operation.

In general, apart from some length-restricted functions (strncat(), strncmp,() and strncpy()), unless you create strings by hand you should not encounter any such problems, . You should use the many useful string handling functions and not really need to get your hands dirty dismantling and assembling strings.

Basic String Handling Functions

All the string handling functions are prototyped in:

#include <string.h>

The common functions are described below:

char *stpcpy (const char *dest,const char *src) -- Copy one string into another.
int strcmp(const char *string1,const char *string2) - Compare string1 and string2 to determine alphabetic order.
char *strcpy(const char *string1,const char *string2) -- Copy string2 to stringl.
char *strerror(int errnum) -- Get error message corresponding to specified error number.
int strlen(const char *string) -- Determine the length of a string.
char *strncat(const char *string1, char *string2, size_t n) -- Append n characters from string2 to stringl.
int strncmp(const char *string1, char *string2, size_t n) -- Compare first n characters of two strings.
char *strncpy(const char *string1,const char *string2, size_t n) -- Copy first n characters of string2 to stringl .
int strcasecmp(const char *s1, const char *s2) -- case insensitive version of strcmp().
int strncasecmp(const char *s1, const char *s2, int n) -- case insensitive version of strncmp().

The use of most of the functions is straightforward, for example:

char *str1 = "HELLO";

char *str2;

int length;

length = strlen("HELLO"); /* length = 5 */

(void) strcpy(str2,str1);

Note that both strcat() and strcopy() both return a copy of their first argument which is the destination array. Note the order of the arguments is destination array followed by source array which is sometimes easy to get the wrong around when programming.

The strcmp() function lexically compares the two input strings and returns:

Less than zero

-- if string1 is lexically less than string2

Zero

-- if string1 and string2 are lexically equal

Greater than zero

-- if string1 is lexically greater than string2

This can also confuse beginners and experience programmers forget this too.

The strncat(), strncmp,() and strncpy() copy functions are string restricted version of their more general counterparts. They perform a similar task but only up to the first n characters. Note the the NULL terminated requirement may get violated when using these functions, for example:

char *str1 = "HELLO";

char *str2;

int length = 2;

(void) strcpy(str2,str1, length); /* str2 = "HE" */

OR

7. b Define bit fields with example. Explain enumeration with suitable example. (16)
Ans:

In order to avoid wastage of memory for specifying the members of structures, it can also be a specified with specific number of bits, called a "bit field." Its length is set off from the declarator for the field name by a colon. A bit field is interpreted as an integral type.

[image: image3.png]

Syntax

struct-declarator:
declarator
type-specifier declarator opt : constant-expression
The constant-expression specifies the width of the field in bits. The type-specifier for the declarator must be unsigned int, signed int, or int, and the constant-expression must be a nonnegative integer value. If the value is zero, the declaration has no declarator. Arrays of bit fields, pointers to bit fields, and functions returning bit fields are not allowed. The optional declarator names the bit field. Bit fields can only be declared as part of a structure. The address-of operator (&) cannot be applied to bit-field components.

Unnamed bit fields cannot be referenced, and their contents at run time are unpredictable. They can be used as "dummy" fields, for alignment purposes. An unnamed bit field whose width is specified as 0 guarantees that storage for the member following it in the struct-declaration-list begins on an int boundary.

Bit fields must also be long enough to contain the bit pattern. For example, these two statements are not legal:

[image: image5.png]

other

Copy

short a:17; /* Illegal! */

int long y:33; /* Illegal! */

This example defines a two-dimensional array of structures named screen.

[image: image6.png]

other

Copy

struct

{

 unsigned short icon : 8;

 unsigned short color : 4;

 unsigned short underline : 1;

 unsigned short blink : 1;

} screen[25][80];

The array contains 2,000 elements. Each element is an individual structure containing four bit-field members: icon, color, underline, and blink. The size of each structure is two bytes.

Bit fields have the same semantics as the integer type. This means a bit field is used in expressions in exactly the same way as a variable of the same base type would be used, regardless of how many bits are in the bit field.

Microsoft Specific

Bit fields defined as int are treated as signed. A Microsoft extension to the ANSI C standard allows char and long types (both signed and unsigned) for bit fields. Unnamed bit fields with base type long, short, or char (signed or unsigned) force alignment to a boundary appropriate to the base type.

Bit fields are allocated within an integer from least-significant to most-significant bit. In the following code

[image: image7.png]

other

Copy

struct mybitfields

{

 unsigned short a : 4;

 unsigned short b : 5;

 unsigned short c : 7;

} test;

int main(void);

{

 test.a = 2;

 test.b = 31;

 test.c = 0;

}

Enumerations
Ans:

ENUM is closely related to the #define preprocessor.

It allows you to define a list of aliases which represent integer numbers. For example if you find yourself coding something like:

 #define MON 1

 #define TUE 2

 #define WED 3

You could use enum as below.

 enum week { Mon=1, Tue, Wed, Thu, Fri Sat, Sun} days;

 or

 enum escapes { BELL = '\a', BACKSPACE = '\b', HTAB = '\t',

 RETURN = '\r', NEWLINE = '\n', VTAB = '\v' };

 or

 enum boolean { FALSE = 0, TRUE };

An advantage of enum over #define is that it has scope This means that the variable (just like any other) is only visable within the block it was declared within.

Ex.

main()

{

/*

 * Define a list of aliases

 */

 enum days {Jan=31, Feb=28, Mar=31,

 Apr=30, May=31, Jun=30,

 Jul=31, Aug=31, Sep=30,

 Oct=31, Nov=30, Dec=31};

 /* A A

 | |

 | |

 | ------- list of aliases.

 -------------- Enumeration tag.
*/

 enum days month;

/* define 'month' variable of type 'months' */

 printf("%d\n", month=Feb);
/* Assign integer value via an alias

 * This will return 28

 */

}

 8. a Explain about linear data structures with example.

 (8)

Ans:

Linear Data Structures

• Are collections of items arranged in a

straight line (i.e. in array, or maybe. . .

linked list!)

Stacks and Queues are linear data structures,

where data can be stored linearly!

• However:

Some rules are applied when adding and

removing items from Stacks and Queues.

• So, let us start with Stack
Stacks

• A stack is a container where the last item is added

(pushed) must comes out first (popped)

• So it is a “Last – In – First – Out”

• LIFO

• Example:

• A long, narrow, one-end, Cars Park:

B C

- Car A must have entered first, then B, and last C!

- Last one in is C, must be the first to come out.

- A is the last to come out, since the first pushed in.

A

M.A. Eljinini, PhD

Stacks – another example

• Look at this code (decimal-to-binary):

• K = 13;

• While (k != 0){

• System.out.print(k%2); // print 0’s and 1’s

• k = k /2;

• }

• What is wrong with this code?

• 0’s and 1’s are printed in reverse order !!

• One solution is to use Stacks !!

• Push 0’s and 1’s inside a stack (i.e. replace the print with

push)

• Then in another loop, start popping and printing !!

• So, Last item entered in the stack, will be removed and

printed first, then the one before last, until we get to the first one entered.
Queue:

Queues

• A Queue is a container where the first item inserted

must comes out first. (a waiting line)

• So it is a “First – in – First – Out”

• FIFO

• Example:

• A long, narrow, open-ends, Cars Park:

B C

- Car A must have entered first, then B, and last C!

- First one in is A, must be the first to come out.

- C is the last to come out, since the Last one in.

Array-Based Representation

• Now, we need to define a Data Structure of the

Queue. Then, we need to write the operations

insert, remove, empty, and init.

public class Queue{ // A Queue to hold 10 Characters

private int front, rear, count; // Why 3 variables ?

private char items[10]; // array of 10 characters

// we just need to define the methods of the queue

} // The new type is called Queue !

Queue (a new type - a class)

OR

8. b Explain about recursion. Write a program to find factorial of a number using

 recursion .
 (8)

Ans:
A recursive procedure (or function, or subroutine) is a procedure which calls itself to to part of the work.

Again, the trick is in the use of the word "part". If it called itself to do all of the work, the result would be an infinite recursion (the recursive equivalent of an infinite loop). Just as a loop does some part of the work during each iteration of the loop, so must a recursive procedure do some part of the work at each level of recursion, until eventually all the work is done.

The usual first example of recursion is the factorial function. This is in many respects a poor example, but we will use it for the same reason everyone else does: it is simple.

The factorial of a positive integer n, written n!, is the product of all the positive integers from 1 up to and including n. Thus, we have

1! = 1
2! = 1 * 2 * 2
3! = 1 * 2 * 3 = 6
4! = 1 * 2 * 3 * 4 = 24
etc.

Note that, for example,
 4! = 1 * 2 * 3 * 4 = (1 * 2 * 3) * 4 = 3! * 4,
and in general,
 n! = (n - 1)! * n.
This leads to the following recursive definition:

The factorial of a positive integer n, written n!, is

1. one, if n = 1 (basis), or

2. (n - 1)! * n, if n > 1 (recursion).

This definition leads immediately to the following computer program (written in C):

int factorial (int n) {

 if (n == 1) return 1;

 else return factorial (n - 1) * n;

}
This function has a basis (n == 1) and a recursive part (factorial (n - 1)), and it does part of the work (multiplying by n) at each level. Thus it seems as though the function might possibly work. But if this is the first time you have seen recursion, you probably are not at all comfortable with it.

In fact, the program does work. The main thing wrong with it is that it's a stupid way to compute a factorial--a loop would be simpler and better. Have patience.

Many authors suggest that the best way to understand a recursive routine is to trace through it, keeping track of what happens at every level of the recursion. By all means work through such a trace, if doing so helps you believe recursion can actually work. But you should never think of tracing through a recursive procedure as a means of understanding, or debugging, such a procedure. "Tracing through" has probably kept hundreds of people from ever really understanding recursion. The purpose of this paper is to describe a better technique.

Ex.

int factorial(int number)

{

if (number < 0)

{

cout << "\nError - negative argument to factorial\n";

exit(1);

}

else if (number == 0)

return 1;

else

return (number * factorial(number - 1));

}
